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ABSTRACT

The violent disruption of the coronal magnetic field is often observed to be restricted to

the low corona, appearing as a confined eruption. The possible causes of the confinement

remain elusive. Here, we model the eruption of a magnetic flux rope in a quadrupolar

active region, with the parameters set such that magnetic X-lines exist both below

and above the rope. This facilitates the onset of magnetic reconnection in either place

but with partly opposing effects on the eruption. The lower reconnection initially adds

poloidal flux to the rope, increasing the upward hoop force and supporting the rise of the

rope. However, when the flux of the magnetic side lobes enters the lower reconnection,

the flux rope is found to separate from the reconnection site and the flux accumulation

ceases. At the same time, the upper reconnection begins to reduce the poloidal flux of

the rope, decreasing its hoop force; eventually this cuts the rope completely. The relative

weight of the two reconnection processes is varied in the model, and it is found that their

combined effect and the tension force of the overlying field confine the eruption if the

flux ratio of the outer to the inner polarities exceeds a threshold, which is ∼1.3 for our

Cartesian box and chosen parameters. We hence propose that external reconnection
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between an erupting flux rope and overlying flux can play a vital role in confining

eruptions.

Keywords: Magnetic Flux Rope; Coronal Mass Ejections; Magnetic Reconnection, Solar

Flares

1. INTRODUCTION

Coronal mass ejections (CMEs) and flares are the two most violent energy release phenomena in the

solar atmosphere. They are believed to be caused by the same process in essence, i.e., the eruption

of a flux rope, which is defined as a set of twisted field lines around a central axis (e.g., Cheng et al.

2017; Patsourakos et al. 2020). Nevertheless, the eruption of a flux rope does not always produce a

CME. Based on the statistics of Nindos et al. (2015), about 45% of all flares above M1-class are not

accompanied by CMEs. However, even for flares without a CME, an erupting flux rope can often be

observed, although it is eventually confined to the low corona. Moreover, such failed rope eruptions

present an early kinematic evolution similar to successful ones (Cheng et al. 2020; Huang et al. 2020).

The observation of a failed filament eruption in Ji et al. (2003) spawned a strong interest in the

possible causes of the confinement. This particular event can be modeled as a kink-unstable flux

rope in the stability domain of the torus instability (Török & Kliem 2005; Hassanin & Kliem 2016).

However, since the helical kink instability appears to occur only in a minority of solar eruptions,

their success or failure is often discussed in the framework of the properties of the torus instability

(TI, Kliem & Török 2006), whose threshold is given by a critical decay index nc. The decay index

n describes how fast the external poloidal field, Bep(R) (often simply referred to as the background

field), declines with height,

n := −d lnBep(R)

d lnR
, (1)

where R denotes the distance of the rope axis to the center of an assumed approximately toroidal

rope. In the simplest case of a nearly toroidal flux rope shape and zero external toroidal (shear/guide)

field, Bet = 0, the threshold is near its canonical value nc = 1.5, but varying parameters, in particular
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Reconnection restraining flux rope eruption 3

the flux rope geometry and shear field strength, cause it to vary in the range nc ∼ 1–2 (Kliem &

Török 2006; Olmedo & Zhang 2010; Démoulin & Aulanier 2010). For n > nc the rope is torus

unstable and erupts. If this condition is fulfilled along the whole path of the rising rope, the eruption

can be successful. This has been supported by a number of case and statistical studies (e.g., Guo

et al. 2010; Cheng et al. 2011; Sun et al. 2015; Wang et al. 2017). Nevertheless, it was found that

torus-unstable rope eruptions may also suffer from failure if the decay index height profile, n(h),

possesses a sufficiently deep minimum, such that a torus-stable height range with n < nc lies above a

torus-unstable height range (Guo et al. 2010), or if the flux rope rotates strongly (Zhou et al. 2019).

That is to say that the occurrence of torus instability is not a sufficient condition for a successful

eruption.

Except for the decay property of the background field, the success or failure of an eruption is also

influenced by other factors. Numerically and with laboratory experiments, it was revealed that a

strong guide field component of the overlying field, Bet > Bep, is able to confine an erupting flux

rope (Török & Kliem 2005; Myers et al. 2015). The cases of an upper torus-stable height range and a

strong shear/guide field are often jointly referred to as configurations with a too strong overlying flux,

and this is widely considered to be the most common reason for the confinement. Moreover, the twist

of the rope was found to be another decisive factor to influence the eruption (Myers et al. 2015; Liu

et al. 2016). Based on careful analyses of a data-driven magnetohydrodynamic (MHD) simulation,

Zhong et al. (2021) proposed that the non-axisymmetry of the rope is an additional critical factor to

constrain its eruption.

Inspired by previous observations and simulations, in which the confinement of eruptions could

result from a too strong overlying field (DeVore & Antiochos 2008) or from external reconnection

between the erupting flux and the overlying field (Netzel et al. 2012; Hassanin & Kliem 2016; Kumar

et al. 2023), we here investigate the joint action of these related effects in the specific topology of a

quadrupolar source region, which facilitates external reconnection. The rest of the paper is arranged

as follows: in Section 2, the numerical model is detailed. In Section 3, we present the results of the

simulations, followed by a summary and discussions in Section 4.
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2. METHOD

2.1. Initial magnetic field
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Figure 1. Initial configurations of the simulations. (a) Bipole case, q2 = 0. (b) Quadrupole1 case with

q2 = −4×1013 T m2. The blue field line is the magnetic axis, the transparent yellow tube shows the toroidal

current channel. (c)–(e) Distributions of squashing factor Q in the plane y = 0, characterizing the magnetic

topology, including Quadrupole2. (f) n(R) of the initial configurations, plotted vs. height z = R−d; dashed

lines mark the heights where n(R) → ±∞.

The classic model of a force-free flux rope by Titov & Démoulin (1999) (hereafter TD99) is illus-

trated in Figure 1(a). A toroidal ring current of major radius R and minor radius a is centered at
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(0, 0, −d). A pair of magnetic charges ± q at (±L, 0, −d) provides the external poloidal field. For

the balance between the upward hoop force and the downward strapping force from the external

field, the equilibrium current I is given by

I =
8π q LR (R2 + L2)−3/2

µ0 [ln(8R/a)− 3/2 + li/2]
, (2)

where li is the internal self-inductance per unit length of the tube (Shafranov 1966). This quantity

depends weakly on the current distribution in the ring. For simplicity, we set Bet = 0.

In this work, we modify the TD99 model to set a flux rope in a quadrupolar active region (Figure

1(b)). This is constructed by adding a second pair of magnetic charges with the strength of ± q2 at

(±L2, 0, −d) with L2 = 2L. In order to yield the same strapping field strength at the geometrical

torus axis (at distance R from torus center) as for the bipole, the strength of the inner pair of charges

is adjusted to

q1 = q − q2
L2

L

(
R2 + L2

R2 + L2
2

)3/2

. (3)

The flux from the inner pair yields a downward force, and the flux from the outer pair yields an

upward force.

We set R = 27.5 Mm, a = 11.1 Mm, d = 7.5 Mm, L = 25 Mm, q = 1013 Tm2, and li = 0.5. Three

initial configurations are created by setting q2 to {0,−4,−5} × 1013 Tm2, and the corresponding q1

are derived from Equation (3), so that −q2/q1 = 0, 1.246, 1.329, respectively. These runs are denoted

with Bipole, Quadrupole1, and Quadrupole2, respectively. As shown in Figure 1, the quadrupolar

configurations possess two X- (null) lines, one above and one below the flux rope, which facilitate

the onset of magnetic reconnection. The corresponding heights of the apex of the upper X-line are

50.3 and 45.2 Mm.

2.2. Numerical model

Before the simulation, a normalization is performed referring to the values at the apex of the

geometric toroidal axis (0, 0, R− d). We take the height R− d, initial field strength B0, density ρ0,

corresponding Alfvén speed VA = B0/
√
µ0 ρ0 and corresponding Alfvén time τA = (R−d)/VA at this
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site as the units of the corresponding variables. For example, for VA = 1000 km s−1, we have τA = 20 s.

The computations are performed in a Cartesian cubic box of [−640, 640]× [−640, 640]× [0, 1280] Mm.

We integrate the normalized ideal MHD equations neglecting gravity and thermal pressure:

∂t ρ = −∇ · (ρu) , (4)

∂t (ρu) = −∇ · (ρuu) +∇ · T+ J ×B , (5)

∂t B = −∇ · (uB −Bu) , (6)

where J ≡ ∇×B is the current density, T ≡ Re
−1 ρ [∇u + (∇u)T − (2/3∇ · u) I] is the viscous

stress tensor, I is the second order unit tensor, T denotes the transposition for a second-order tensor,

and Re denotes the fluid Reynolds number. Closed boundaries are applied (u = 0, at all boundaries),

resulting in an invariant normal magnetogram component (∂ Bz/∂ t|z=0 = 0).

Equations (4) to (6) are integrated by the modified Lax-Wendroff scheme described in Török &

Kliem (2003). In place of the diffusive Lax step, artificial smoothing (Sato & Hayashi 1979) is applied

to ρ through the substitution ρi → (1− cρ) ρi+ cρ/6
∑

j ρj, where j are the 6 neighbor grid points of

i. This is similar in structure to the Lax term, which has cρ = 1, but far less diffusive for small values

of cρ. This smoothing is also applied to u and B. The latter introduces numerical resistivity, which

facilitates magnetic reconnection. We set cρ = cu = 0.01− 0.1 (exponentially decreasing with height

in [0, 100] Mm, and staying at 0.01 in the region above), and choose a small, uniform cB = 0.001

to ensure that magnetic diffusion is not significant outside of the reconnection regions. The nonzero

∇ ·B resulting from the finite differences is kept small by the standard diffusive treatment following

Dedner et al. (2002). The initial density is set to ρ(x, t = 0) = |B(x, t = 0)|3/2 (see, e.g., Török &

Kliem (2005) for a discussion of this choice). The initial velocity is set to u(x, t = 0) = 0.

3D magnetic reconnection preferentially takes place where a large gradient of magnetic connectivity

is present. Such connectivity change can be quantified by the squashing factor Q (Titov et al. 2002;

Titov 2007). Separatrices are located where Q = ∞, quasi-separatrix layers (QSLs) are located

where Q ≫ 2. The distribution of Q in the midplane of the configuration, {y = 0}, is here computed

following Zhang et al. (2022). Two separatrices (QSLs) intersect with each other in a separator (quasi-
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separator or hyperbolic flux tube (HFT; Titov et al. 2002)). Such intersections, jointly referred to as

“(quasi-) separators” of the magnetic field in the following, are the favorable sites for 3D magnetic

reconnection (Priest 2000; Pontin 2011). These topological structures allow us to quantify the 3D

reconnection processes at the different locations and their temporal evolution. Because we have set

Bet = 0, our quadrupolar configurations initially contain true separators, the X-lines, which would

change to HFTs if Bet ̸= 0.

3. RESULTS

The rise profiles of the magnetic axis’ apex point are shown in Figure 2 for the three runs. The

decay index of the external poloidal field at the initial magnetic axis of Bipole and Quadrupole1–2

configurations are 1.73, 4.65, and 5.77, respectively. For the Bipole case, the initial flux rope is

only slightly above the marginally unstable state, therefore it takes a relatively long time to erupt.

The Quadrupole1–2 cases are not only intially positioned much further into the unstable domain of

parameter space, but their external poloidal field continues to decrease much faster with height up to

the null line and field reversal, where n(R) has a pole (Figure 1(f)). Consequently, their instability

commences immediately and develops stronger. It is worth noting that the relative magnetic helicity

is largest for the Bipole and far smaller for Quadrupole1–2, with the flux-normalized values being

Hm/F
2 = −0.15, −0.004, and −0.002, respectively. The small values of the quadrupolar cases result

from the opposite relative helicities between the flux rope and the oppositely directed inner and outer

bipole fields.

We first focus on the evolution of Quadrupole2. Two mechanisms drive the acceleration: torus

instability and “flare” reconnection in the vertical (“flare”) current sheet that forms from the initial

X-line under the flux rope. This reconnection feeds poloidal magnetic flux—the strapping flux in the

center lobe—into, and generates an upward outflow toward, the flux rope. However, the flux feeding

only takes a short period, up to t ≈ 6 τA. Subsequently, the flux rope axis quickly separates from the

lower reconnection region (within ∼ 3–4 τA; see Figure 3). The separation is also obvious from the

increasing distance between the magnetic rope axis and the upper edge of the upward reconnection

outflow in Figure 4. The reason for the separation and the subsequent decline of the flare reconnection
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Figure 2. Height-time (upper), velocity-time (middle) and acceleration-time (lower) profiles of the apex

point of the flux rope axis in the three runs. The run Bipole (green profiles) is scaled with the green t-axis,

other runs are scaled with the black t-axis.

(Figure 4) is the change from strapping-flux to side-lobe-flux reconnection, which happens when the

bounding separatrices meet at the flare current sheet (see Figure 3 at t = 6.0 τA). The reconnected

side-lobe flux does not wrap around the erupting flux rope, but rather forms high-lying loops below

the rope and above the side lobes (Figure 5, t = 9.4 τA, 17.8 τA). This reconnected flux separates the
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Figure 3. Squashing factor Q(x, 0, z) at different times for the run Quadrupole2, showing the evolution

of the magnetic topology. An animation is available online to show the evolution of the Squashing factor

Q(x, 0, z) distribution during t ∈ [0, 55.3] τA. The duration of the animation is 26 s.

flux rope from the region of flare reconnection, terminating the support of the eruption by the flare

reconnection through both flux accretion and momentum transfer by the reconnection outflow jet.

Figure 4 shows a high gradient of Uz at the upper (quasi-) separator, corresponding to an inflow in

the reference frame tied to the (quasi-) separator which rises with the flux rope. This indicates that
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reconnection also acts above the rope in a horizontal current sheet forming from the upper initial

X-line from the very beginning of the simulation. The upper reconnection reduces the constraining

overlying flux, and initially transfers it to the side lobes, joint with the reconnected strapping flux

from the center lobe, as in the breakout model. However, when all strapping flux is reconnected, the

upper reconnection begins to involve the flux rope, building up a connection of each rope footprint

to the outer ambient flux sources. At the same time, the side lobes meet in the flare current sheet

(Figure 3). The resulting erosion of the rope flux corresponds to a reduction of the toroidal current I,

which is proportional to the poloidal flux of the rope. The strapping force in the rope is proportioned
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to I, while the upward hoop force is proportioned to I2. Thus, the upper reconnection with the flux

rope weakens the net upward force in the rope that drives the eruption.

Figure 2 shows that the main upward acceleration of the rope ends at t ≈ 5.2 τA, shortly before all

strapping flux is reconnected and the upper reconnection and the separation of the rope begin. The

tension force of the overlying flux rooted in the outer polarities decelerates the rope in this interval,

but the major deceleration, leading to the confinement, happens in a much longer subsequent period

when all three effects act jointly (Figure 2, middle).

A transitory amplification of the reconnection outflows occurs when the side lobes join the lower

reconnection because of their higher flux density (|q2| > q1). This enhances the upward tension force

of the upper outflow, strongly acting on the flux rope around t = 10 τA (Figure 4). The resulting

transitory second acceleration of the rope remains minor in the overall evolution of the eruption

(Figure 2).

In the early phase, both lower and upper reconnection are proceeding simultaneously (Figure 5,

t = [4.1 τA, 5.5 τA]). While the lower reconnection decouples from the flux rope after t ≈ 6 τA, the

upper reconnection acts strongly on the rope during most of the deceleration phase (Figure 5). This

results in all rope flux being peeled off, eventually destroying the rope (Figure 5, t = 27.9 τA).

The run of Quadrupole1 also shows the separation of the flux rope from the lower reconnection

region, only slightly later, also leading to deceleration. This eruption is intermediate between the

Bipole and Quadrupole2 runs. It shows a rise above 19 times of the initial height at a considerable

speed (Uz ≈ 0.4VA) with only a weak deceleration (Figure 2). With the given box, this eruption is

ejective. Because the eruption shows a propagation phase dominated by inertia already from ≈ 1/10

of the box height, an even larger box is expected to yield the same result. On the other hand,

an exponential phase, a typical characteristic of instability, is not clearly seen here (similar to Run

Quadrupole2). Comparing the two quadrupolar configurations, it is obvious that a stronger q2 forms

a lower null and provides a higher amount of overlying flux that can be reconnected at the upper null;

then the effect of restraining the eruption by the upper reconnection is more significant. Additionally,

the downward tension force of the overlying flux is higher. We have further constrained the point of
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t =  0.0 τA t =  4.1 τA

t =  5.5 τA t =  9.4 τA

t = 17.8 τA t = 27.9 τA

Figure 5. Temporal evolution of the field lines for the run Quadrupole2. The color scale of Bz is the same

as Figure 1. An animation is available online to show the evolution of the magnetic field lines during t ∈ [0,

55.3] τA. The duration of the animation is 14 s.
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transition between confined and ejective behavior of the eruption in the quadrupolar configuration

and found it to lie in the range q2 ∈ [425, 450] × 1013 Tm2, corresponding to −q2/q1 ∈ [1.27, 1.29].

This range depends on the parameters d/R, a/R, and L/R, as well as (weakly) on the numerical

settings.

4. SUMMARY AND DISCUSSIONS

In this Letter, we present a model for confined solar eruptions in quadrupolar field configurations

with a flux rope pre-existing in the central flux lobe. A new key feature of the model is the change in

character of the upper reconnection in the current sheet forming from the (quasi-) separator above

the erupting flux rope when all strapping flux in the center lobe has reconnected and the rope itself

enters the reconnection. The upper reconnection supports the eruption initially, in full agreement

with the breakout model, according to which the reconnection moves overlying flux to the side lobes,

decreasing its restraining force (Antiochos et al. 1999; DeVore & Antiochos 2008; Karpen et al. 2012).

However, after all strapping flux in the center lobe has been removed, the upper reconnection erodes

the flux rope, decreasing its upward hoop force that drives the eruption and it can eventually destroy

the rope.

At the same time, the flux of the side lobes enters the vertical current sheet under the rope. The

lower reconnection, often referred to as “flare reconnection”, also changes its character at this point.

The flux in the upward reconnection outflow then does no longer wrap about the erupting flux rope

but rather forms simple loops above the side lobes. This results in a separation of the erupting

flux rope from the lower reconnection region, so that the strengthening of the upward force by flux

accretion and momentum transfer to the rope terminates, very soon after the flux rope has risen

above the side lobes.

Thus, in eruptions from the central lobe of a quadrupolar configuration, both the upper and lower

reconnection act against the eruption when all strapping flux in the center lobe has been removed.

Jointly with the standard tension force of the overlying flux rooted in the outer polarities, this can

confine the eruption.
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The mechanism does not require the flux rope to exist before the onset of the eruption. Rather,

it can work in the same way when the formation of the flux rope commences simultaneously with

the eruption (as, e.g., in Mikic & Linker 1994; Karpen et al. 2012; Jiang et al. 2021b). It does

require that the strapping flux in the center lobe, i.e., the total flux in the center lobe minus the

rope flux at the onset of the eruption (e.g, by onset of the torus instability), be smaller than the

overlying flux rooted in the outer polarities. This is guaranteed if |q2| > q1 but fulfilled also in a

range of |q2| somewhat smaller than q1 in the case of a pre-existing flux rope. However, to explain

the confinement of eruptions at the typically observed heights in the low to middle corona, up to

about z ∼ (3/4)R⊙ and ∼ 20 times the initial height (e.g., Koleva et al. 2012), the ratio |q2/q1| must

not be too small. The runs Quadrupole1 and 2 and intermediate test runs suggest a threshold of

|q2/q1| ∼ 1.3. The threshold depends on the parameters, primarily on d/R, which generally influences

the stability properties of the TD99 flux rope, and on L2/L, which determines the height profile of the

flux overlying the flux rope and, hence, the amount of overlying flux jointly with |q2/q1|. For larger

L2/L, the field strength above the rope decreases less with increasing height, so that the threshold of

|q2/q1| is expected to decrease slightly. On the other hand, in spherical coordinates the field strength

decreases faster, implying a somewhat higher threshold on the Sun.

The threshold value appears consistent with the source-region properties of confined vs. eruptive

flares in Wang & Zhang (2007) and Cheng et al. (2011). All confined events occurred in the central

part of complex source regions suggestive of outer overlying flux at least as strong as the central

flux around the erupting part of the polarity inversion line. All ejective events occurred near the

periphery of the source region where no such strong outer overlying flux was present.

Our results are also consistent with the confinement (DeVore & Antiochos 2008) and success (e.g.,

Lynch et al. 2008) of breakout eruptions that have used |q2| significantly larger (smaller) than q1

and showed (did not show) reconnection of side-lobe flux under the erupting flux, respectively. The

reconnection of side-lobe flux in the ejective breakout eruption in Karpen et al. (2012) begins just

when the kinetic energy in the box stops rising (see their Figures 4 and 14); at this time the flux
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rope is already too high (z ∼ 4R⊙) to be stopped by the remaining overlying flux , i.e., their flux

ratio corresponding to our |q2/q1| must be below the treshold for confinement.

As revealed in the Quadrupole1 run, the external reconnection might also responsible for the

deceleration of CMEs in the high corona, which is usually ascribed to aerodynamic drag (e.g., Vršnak

et al. 2004; Shi et al. 2015). Another implication is the transfer of magnetic helicity and twist from

the reconnecting flux rope to the ambient field. It provides a possible interpretation for the formation

of large-scale flux ropes as indicated by large-scale filaments in the vicinity of sunspots (e.g., Guo

et al. 2019).
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